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Abstract

Transition metal oxides with mobile electrons and oxygen ions (mixed conductors) constitute a broad class of materials that include selective
oxidation catalysts, high-temperature electrocatalysts, and ion-transport membrane materials. Although the thermodynamic and transport proper-
ties of mixed conductors are generally understood, a consensus has not yet emerged regarding the mechanisms and rate laws governing exchange
of oxygen with the bulk at the gas-exposed surface. To aid interpretation of existing kinetic data, and generate testable hypotheses for further
research, this paper outlines a framework for predicting O2 reduction rate laws based on specific reaction mechanisms. Based on nonequilibrium
thermodynamics and transition state theory, this framework yields rate laws that are rigorously consistent with thermodynamics, yet allow rates
of individual steps to be developed in terms of simple mass action laws, where appropriate. This framework is used to reexamine equilibrium
oxygen-exchange kinetics reported for electron-rich perovskite mixed conductors La1−xSrxCoO3−δ (LSC) and La1−xSrxFeO3−δ (LSF), which
have a metallic and a semiconducting band structure, respectively. Our analysis suggests that metallic band structure may play an important role
in catalysis by stabilizing physisorbed O2 on the surface. We also show that equilibrium surface exchange rates (as measured by 18O/16O iso-
topes, concentration steps, impedance, etc.) are generally only weak indicators of mechanism, and emphasize the need for kinetic data involving
moderate to large displacements from equilibrium.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Transition metal oxides with both mobile electrons and oxy-
gen ions (mixed conductors) constitute a broad class of ma-
terials that include selective oxidation catalysts, ion-transport
membrane materials, and high-temperature electrocatalysts for
solid oxide fuel cells or solid-oxide electrolysis. An important
feature of these materials is their ability to reversibly absorb
and desorb oxygen into the lattice by continuous changes in ox-
idation state, without changes in overall bulk crystal structure.
The rate of absorption/desorption is governed by bulk anion and
electron transport, as well as catalytic reduction/oxidation of O2
or other oxygen-containing molecules at the surface [1].

Although the thermodynamic and transport properties of
mixed conductors are generally understood, a consensus has
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not yet emerged regarding the likely mechanisms or appropri-
ate rate laws governing surface reactions. Of particular interest
is O2 reduction/oxidation, as illustrated in Fig. 1. Although nu-
merous methods have been developed to measure and describe
this reaction [2–8], a rigorous framework for connecting kinetic
measurements to specific mechanisms has not yet emerged. One
challenge in developing such a framework is that these mate-
rials are often highly doped or defective, leading to nonideal
thermodynamic behavior. This precludes the use of simple mass
action rate expressions, because these do not properly describe
the thermodynamics in the limit of equilibrium. Of particular
difficulty is the handling of mobile electronic species (electrons
and holes) when materials fall somewhere between semicon-
ductor and metal. As electrons become increasingly itinerant,
they tend toward fixed entropy but vary in energy with elec-
tron occupation [9]. Thus mass action laws (which assume fixed
energy but configurational entropy scaling as the logarithm of
concentration) are expected to break down.
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Fig. 1. Reversible oxygen exchange 1
2 O(gas)

2 + 2e−(solid) � O2−(solid) be-
tween a mixed conductor of variable oxidation state and the surrounding gas
atmosphere.

Fig. 2. Domains of validity for existing kinetic modeling approaches, expressed
on a map of increasing departure from ideality vs magnitude of the thermody-
namic driving force. Shading indicates increasing validity. Figure is based on
that in Ref. [12].

Maier, who has extensively investigated the relationship
between thermodynamics and kinetics in mixed conductors
[10,11], has described the problem of nonideal thermodynam-
ics as shown in Fig. 2 [12]. For ideal systems in which species
free energy scales negatively with configurational entropy (e.g.,
lattice gas), a mass action rate expression can be used with
no conflict with thermodynamics, even at high driving forces.
This is often the case for gas-phase and surface catalytic reac-
tions, leading to the widespread use of mass action rate expres-
sions in heterogeneous catalysis (e.g., Langmuir–Hinshelwood
kinetics). A mass action approach is also the norm in han-
dling rate laws involving ideal point defects in solids [11]. In
contrast, for nonideal systems, one can always develop a rate
expression based on linear irreversible thermodynamics that is
valid for small displacements from equilibrium. For example,
Maier has used this approach to differentiate the expected lin-
ear force-flux coefficients governing various oxygen-exchange
measurements [10]. This leaves a wide range of possible op-
erating conditions involving both nonideal thermodynamics as
well as large (nonlinear) driving forces. This regime is of partic-
ular interest in catalysis, where we often seek to apply nonlinear
driving forces to probe mechanism, for example, to determine
reaction order with respect to a particular species.

The proper means of incorporating nonideal thermodynam-
ics into kinetic rate laws is a well-established subject of investi-
gation [13,14]. In general, workers have approached this prob-
lem from the perspective of two asymptotic limits. For electro-

chemical (faradaic) reactions at solution–metal interfaces, the
driving force is often purely energetic; that is, ions and elec-
trons remain in fixed concentration but experience shifts in free
energy relative to equilibrium due to changes in solution poten-
tial relative to the electrode [14]. In this scenario, any additional
nonideal energetic interactions (e.g., solution thermodynam-
ics) are often lumped together with kinetic parameters into a
constant exchange current density (e.g., Butler–Volmer equa-
tion) [15]. Such a rate expression is thermodynamically rigor-
ous at high driving forces, provided that solution composition
remains fixed. Although mass action laws still are often used to
estimate the composition dependence of the exchange current
density, this approximation does not limit the thermodynamic
rigor of the rate expression.

In contrast, the driving force for chemical reactions is inher-
ently entropic, involving a displacement of species concentra-
tions from equilibrium. In this case the role of nonideal ener-
getic interactions is to modify species activity from ideality, re-
sulting in departures from the law of mass action. Workers have
generally found experimentally that rates scale with the con-
centration (not the activity) of the transition state species [16].
In this limit, driving force-dependent rate coefficients may be
derived that incorporate the ratio of the activity coefficients
of the reactants to that of the transition state. Examples in-
clude systems involving dilute strong electrolytes [13], strong
species–solvent interactions [17,18], or high gas pressures [19].
This approach is ideally suited to systems in which all species
(including the transition state) are molecular entities, whose ex-
cess free energy can be defined in terms of specific energetic
interactions with their surroundings.

In the case of the O2-exchange reaction (Fig. 1), one can
identify similarities with both electrochemical and chemical
reactions. The prevailing thermodynamics involve molecular
species in the gas and on the surface, as well as ionic and elec-
tronic species on the surface and in the bulk. The reaction is
nonfaradaic yet involves charged species that must cross a space
charge region within the bulk material as if it were a solution.
The rate may be coupled to molecular diffusion and surface
transport processes, as well as to bulk ionic and electron trans-
port. Thus to address this system adequately, we must take a
step back and reconsider the nature of the driving force in this
class of reactions. Doing so requires incorporating ideas from
nonequilbrium thermodynamics, transition state theory, chem-
ical kinetics, electrochemical kinetics, point defect theory, and
band theory.

In what follows, we use a framework for treating reactions
where the driving force explicitly involves both energetic and
configurational entropic contributions. This approach begins
by identifying the specific energetic and entropic contributions
to the free energy for each reactant species. After separating
the configurational entropy, the rate law can then be devel-
oped in a standard nonequilibrium thermodynamic form, with
mass action expressed explicitly where appropriate. This frame-
work is used to predict the kinetics of O2 exchange on mixed
conducting oxides with high concentrations of free electron
carriers. Scenarios considered include metallic versus semi-
conducting band structure, as well as various possible rate-
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limiting steps. These models are then used to reexamine the
equilibrium exchange rates on the perovskite mixed conductors
La1−xSrxCoO3−δ (LSC) and La1−xSrxFeO3−δ (LSF).

2. Oxygen exchange kinetics for mixed conductors with
metallic versus semiconducting band structure

2.1. A general form for kinetic rate expressions based on
thermodynamic driving forces

As explained in Appendix A, the net rate of any elementary
reaction step (j ) obeying transition state theory can be stated in
the form

(1)rj = kj e
−�G0

f,j /RT
e((1−βj )�Ej )/RT

[
1 − e−Λj /RT

]∏
i

ci ,

where kj is a composition-independent pre-exponential factor,
�G0

f,j is the unperturbed free-energy barrier for the reaction
step (evaluated at �Ej = 0), �Ej is a shift in free energy of
reaction associated with a finite driving force (defined in Ap-
pendix A and identified below), βj is a reaction symmetry pa-
rameter analogous to that used in electrochemical kinetics, Λj

is the total free-energy driving force for the reaction step, and ci

are concentrations of the reacting species in the forward direc-
tion whose configurational entropic contribution to the driving
force have not been included in �Ej . The concentrations ci

represent composition variables expressed in any convenient set
of units consistent with the chosen reference state and definition
of kj (e.g., partial pressure, surface concentration or coverage,
bulk species concentrations, or mole fractions).

To apply Eq. (1) to an overall reaction, we must first define
the elementary steps that constitute the reaction, as well as the
free energy of reactants, products, and intermediates involved
in those elementary steps. We must then identify the portion
of the driving force associated with nonconfigurational shifts
in free energy. Finally, we might also wish to hypothesize a
specific rate-limiting step, which constitutes the bottleneck to
the reaction. In what follows, we apply Eq. (1) to the analysis
of O2 reduction on a perovskite mixed conductor, where two
asymptotic limits of electronic structure are considered: (a) the
material has metallic band structure and thus electrons enter as
an energy shift through the Fermi level, and (b) the material
is semiconducting, and thus electron holes can enter explicitly
through mass action.

2.2. Kinetic considerations

Referring to Fig. 1, we must first subdivide the O2-exchange
reaction into specific elementary steps, identifying appropri-
ate surface intermediates. Steps commonly considered in the
catalysis and ionics literature include O2 adsorption, O2 disso-
ciation, changes in oxidation state of diatomic or monatomic
oxygen species, and incorporation of adsorbed O into the bulk.
We first try to narrow this list by considering what is known
about oxide catalysts. The assumptions stated below are by no
means assertions, but rather hypotheses based on limited inde-
pendent information.

First, we must make some assumptions about the defect
structure of the surface. In analogy to bare metals in high vac-
uum (such as Pt), many workers (including us) have postulated
mechanisms in which Oq−

2 or Oq− (of various valances q) ad-
sorb as dilute species on the oxide surface [10,20–25]. Although
in some cases mass action effects of free surface sites (i.e.,
Langmuir adsorption) are considered, this is often done with
an implicit assumption of low surface coverage. This approach
generally defies the conventional wisdom of the oxide catalysis
literature, which usually considers the surface to be fully oxi-
dized except for specific coordinatively unsaturated sites, often
attributed to surface point defects, step edges, or other surface
defects [26–35]. To the best of our knowledge, there is no pub-
lished evidence that individual oxygen atoms are stable on a
fully oxidized surface without bonding to a metal atom. Given
these considerations, we assume that adsorption of O2 requires
a vacant surface site (analogous to a bulk oxygen vacancy) and
that dissociation requires a second vacant surface site to interact
with the adsorbed diatomic.

Second, we must consider the valance of monatomic oxy-
gen on the surface. Although workers often consider this an
independent variable subject to oxidation or reduction (O ↔
O− ↔ O2−) [10,20,21,36], there is currently little independent
evidence to support this assumption. For example, XPS and
other measurements suggest that dissociatively adsorbed oxy-
gen on Pt adopts a fixed oxidation state (approximately O−),
by virtue of its bonding configuration to Pt [37]. This species is
the same whether one adsorbs oxygen from the gas or pumps it
onto the surface from an electrolyte, such as yttria-stabilized
zirconia (YSZ). Likewise, recent density functional calcula-
tions suggest that oxide ions at the ceria surface share nearly
the same oxidation state as in the bulk [38]. Another way to
phrase these observations is that any charge-transfer steps in-
volving monatomic oxygen are fast, and thus only one species
is relevant as a reactive intermediate. We assume that the same
is true for an oxide mixed conductor—oxide ions at the surface
have a fixed oxidation state determined by their bonding con-
figuration. For the moment, we leave the value of this oxidation
state as an unknown, returning to this question for specific ma-
terials.

Third, we must also consider the identity of adsorbed di-
atomic intermediates, such as physisorbed O2, superoxide, and
peroxide (O2 ↔ O−

2 ↔ O2−
2 ). These species have all been ob-

served on oxide catalysts under certain circumstances of bond-
ing and thus are legitimate possibilities. However, we limit
our discussion to cases where the reaction is limited by a spe-
cific rate-determining step. In this scenario, we might combine
steps before and after the rate-determining step, leaving only
one stable intermediate defined explicitly. This does not mean
that multiple oxidation states do not occur, but rather that only
one of these species is of identifiable kinetic significance. The
question then becomes the identity and charge of this critical
intermediate, which we also leave as unknown for the moment.

Finally, we also assume that in a material with metallic
band structure, considering the mass action of specific elec-
tronic point defects (electrons and holes) is not meaningful. In
this case, the mechanistic role of electrons is expected to enter
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through charge compensation and shifts in electron-free energy.
Fleig [21] previously treated electrons in metals as having fixed
entropy and internal energy. We believe that these electrons will
have fixed entropy but variable internal energy due to changes
in Fermi level with respect to core states [9].

With the assumptions outlined above, and adopting Kröger–
Vink notation [39] for the charge of oxygen species relative to
bulk lattice oxygen, we are left with the following 3-step kinetic
description of the O2 reduction reaction:

(2a)adsorption: O2 + Vqs

Os

· + qadse
− � (O2)

qO2
Os

·,

(2b)dissociation: (O2)
qO2
Os

· + Vqs

Os

· + qdisse
− � 2OqO

Os

·,

(2c)incorporation: OqO
Os

· + V··
Ob

+ qincorpe
− � OX

Ob
+ Vqs

Os

·,

and

(2d)overall reaction: O2 + 2V··
Ob

+ 4e− � 2OX
Ob

,

where the primary symbols O2, V, and O refer to diatomic oxy-
gen, oxygen vacancies, and oxygen atoms, respectively. The
subscripts Os and Ob refer to species location at a surface or
bulk oxygen site, respectively. The superscripts indicate species
charge relative to a normal lattice oxygen ion (see Appendix B
for further explanation of Kröger–Vink notation), and qadsqdiss,
and qincorp are the charge transferred in each of the three steps.
Imposing charge balance, we require

(3a)qs = qO + qads + qdiss

2
,

(3b)qO2 = qO − (qads − qdiss)

2
,

(3c)qads + qdiss + 2qincorp = 4.

Due to electroneutrality and site conservation, these species
cannot change concentration independently. Even at the sur-
face, where charges are separated across an interface, Gauss’s
law requires that the entire interface (including associated dou-
ble layers) be neutral. Thus for purposes of defining thermody-
namic relationships, it is useful to adopt a neutral building-unit
convention. Let us define

(4a)s = {
V

qs

Os

· + (qs − qO)e− − OqO
Os

·},
(4b)sO2 = {

(O2)
qO2
Os

· + (qO2 − qO)e− − OqO
Os

·},
and

(4c)ν = {
V ··

O + 2e− − OX
O

}
.

Fig. 3 illustrates the system configurations associated with these
three neutral building units.

A building unit convention is a convenient way of incorpo-
rating lattice site conservation into thermodynamic and trans-
port laws [39]. In this case, we have extended this building unit
convention to also include charge compensation. As explained
by Newman, this approach avoids the problem of defining ac-
tivities of charged species [15]. The way in which the species
in Eq. (4) have been defined (Fig. 3), they are neutral entities
and thus have well-defined chemical potentials independent of
electrical state. If this were an electrochemical reaction (involv-
ing current across an interface between two phases), then the

Fig. 3. Configurations corresponding the neutral building units defined in
Eq. (4). Absence of a formal charge assignment reflects the fact that the bulk
and interface remain electrically neutral as a whole (not that individual species
are uncharged). Energetic effects of charge separation are included in the build-
ing unit free energies (see text).

chemical potential of the surface building units would need to
be expressed in terms of a difference in electrical state between
the two phases. However, for a chemical interface (no current),
this difference is determined by surface coverage (dipole) and
thus is experimentally indistinguishable from other shifts in ad-
sorption enthalpy.

It should be emphasized that the adoption of a neutral build-
ing unit convention in Eq. (4) does not imply that the electro-
chemical potential of bulk or surface species are independent
of local Galvani potential. For example, recent models by Fleig
[21] and Mebane [22] defined electrochemical potential of sur-
face species in terms of a surface potential and examined how
shifts in surface potential enter as an energy-shift component of
the driving force. The approach here does not conflict with,or
preclude such models. Here we have simply bundled these con-
tributions together into the definition of the building unit. As
with moderately dilute or concentrated solutions [15], this ap-
proach avoids defining more thermodynamic variables than are
independently measurable. As we will discuss further below,
the role of individual species entropy (or energy) may be iden-
tified explicitly later as desired, depending on one’s particular
microscopic model of the surface (including metallic vs semi-
conducting materials and n-type vs p-type materials).

With this approach, only molecular, ionic, and adsorbate
mass action remain defined explicitly in the following reaction
steps:

(5a)adsorption: O2 + s � sO2,

(5b)dissociation: sO2 + s � null,

(5c)incorporation: ν � s,

and

(5d)overall reaction: O2 + 2ν � null.

Applying Eq. (1), our kinetic rate laws for the three reactions
become

(6a)

rads = kadse
−�G0

f,ads/RT
PO2Γse

((1−βads)�Eads)/RT

× [
1 − e−Λads/RT

]
,

(6b)

rdiss = kdisse
−�G0

f,diss/RT
ΓsΓsO2e

((1−βdiss)�Ediss)/RT

× [
1 − e−Λdiss/RT

]
,
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and

(6c)

rincorp = kincorpe
−�G0

f,incorp/RT
xνe

((1−βincorp)�Eincorp)/RT

× [
1 − e−Λincorp/RT

]
,

where PO2 is the partial pressure of oxygen in the gas relative to
atmospheric pressure, Γi is the fraction of active surface sites
occupied by species i, xν is the fraction of bulk oxygen lat-
tice sites occupied by a vacancy, and �Ej is the energy-shift
component of the thermodynamic driving force for the j th reac-
tion, as derived below. Under quasi-steady conditions, the rate
of the three reactions are related to the overall reaction (and
each other) by

(7)r = rads = rdiss = rincorp

2
.

2.3. Thermodynamic considerations for systems with metallic
band structure

To proceed, we now introduce a set of thermodynamic rela-
tionships between the various species concentrations and chem-
ical potentials of the building units. We reemphasize that we
must consider the chemical potential of the entire building unit,
which includes multiple atomic and electronic species and any
energetic interactions among them. Although the charge sepa-
ration at the interface can be expressed in terms of a difference
in inner potential between surface and bulk [21,22], this poten-
tial difference is a function of composition, and thus it appears
here as an energy contribution to the chemical potential of the
neutral building unit with no loss of generality.

In most of the materials that we consider, the bulk vacancy
concentration remains small, and thus it is reasonable to assume
that the configurational entropy of lattice oxygen (OX

O ) remains
constant, obeying the solvent approximation (up to ∼10% er-
ror in some cases). Although in general we expect the surface
chemistry to be different than the bulk, we recognize that the
material is an oxide and as such is highly oxidized even at the
surface. Thus, we likewise assume that the fractions of free sur-
face vacancies (Γs ) and adsorbed diatomic intermediates (ΓsO2 )
are relatively small compared with the concentrations of oxi-
dized sites, which remain relatively close to saturation and thus
also obey the solvent approximation.

For metallic mixed conductors, such as La1−xSrxCoO3−δ ,
Lankhorst has developed a model for the chemical potential of
bulk neutral vacancy building units (ν), as defined in Eq. (4c).
The primary assumption of Lankhorst’s model is that elec-
tron entropy remains roughly constant, whereas electron energy
depends linearly on electron occupation within a metallic or
broadly manifolded band of states. Thus the configurational en-
tropy of the building unit is dominated by vacancies, whereas
the internal energy is dominated by shifts in Fermi energy on
changes in oxidation state (related to vacancy concentration
through electroneutrality). With the addition of the solvent ap-
proximation, Lankhorst’s model predicts

(8)μν = μ0
ν(x) + RT ln(xν) + 2EF (xν),

where x is the number of acceptor dopants per 3 oxygen sites
(e.g., mole fraction of Sr on La/Sr sites in La1−xSrxCoO3−δ),

Fig. 4. Charge separation created by an oxygen atom being removed from
(a) the bulk (ν) or (b) the surface (s) as 1

2 O2. In metallic mixed conductors,
liberated electrons join band states at the Fermi level, which is a function of
composition [9].

μ0
ν(x) = − 1

2 (Eox − TSox + 4x/g0) is the standard free energy
of a neutral vacancy building unit, and

(9)EF (xν) = 6xν/g0

is the Fermi energy measured relative to its value at full oxygen
stoichiometry, where g0 is the density of states at the Fermi
level in the bulk, assumed to be constant [9].

The second term on the right side of Eq. (8) represents
the normal shift in bulk vacancy chemical potential with va-
cancy configurational entropy. The last term in Eq. (8) reflects
the positive shift in electron energy relative to core states as
the material is reduced. This latter process is depicted quali-
tatively in Fig. 4a. When a vacancy is created by pulling an
oxygen atom out of the bulk, the average oxidation state of
the transition metal must decrease, resulting in an increase in
electron energy. This model has been found to agree well with
gravimetric and coulometric nonstoichiometry measurements
in La1−xSrxCoO3−δ , over a wide range of x, T , and PO2 [40].

To predict μs, we must similarly consider how shifts in
Fermi energy might affect the stability of surface vacancies. To
begin, let us imagine the surface as a net electrically neutral in-
terface, with a surface dipole related to the charge separation
between surface species and their mirror charges in the bulk.
This charge separation is similar conceptually to the internal
charge separation between oxygen vacancies and free electrons
in the bulk. Thus we might expect a relationship similar to that
in Eq. (8) to prevail.

How charge separation at the surface and other adsorbate
interactions influence the energy of adsorption is a subject of
great debate and uncertainty [41]. For dilute semiconductors,
workers often explicitly describe the effect of charge sepa-
ration on the energy of adsorption [42]. Some workers have
applied similar ideas to dissociative adsorption on mixed con-
ductors, defining a composition-dependent surface potential, χ ,
as the difference in Galvani potential between surface and bulk
[21,22]. However, this approach assumes that all other energetic
contributions remain constant as a function of surface coverage.
Experimental and theoretical studies of charge-compensated
adsorption on metal and oxide catalysts have led to little con-
sensus as to whether adsorption enthalpy actually changes with



96 S.B. Adler et al. / Journal of Catalysis 245 (2007) 91–109

coverage in this manner [41]. Workers have generally shown
that reconstruction or other adjustments to the local electronic
structure can be as significant as surface dipole effects, lead-
ing to positive, negative, or zero shifts in enthalpy with cover-
age [43–45]. Because surface dipole effects are experimentally
inseparable from these other energetic interactions, the intro-
duction of χ in this context is of limited utility. Studies of O2,
CO, and NO adsorption on single-crystal Pt, Ni, and Rh show
that variations in adsorption enthalpy with coverage in the range
of interest here are generally smaller than differences among
different crystal faces [43]. Thus, in the absence of better infor-
mation, we assume that the energy of adsorption is independent
of surface vacancy concentration.

But because the material is a good electronic conductor, we
expect the Fermi level seen by species on the surface to be the
same as that in the bulk [15] (assuming that electrons remain
in equilibrium). Although changes in surface species concen-
trations will contribute negligibly to shifts in the bulk Fermi
energy, the Fermi energy remains dependent on bulk composi-
tion. Thus, even without surface dipole effects, we expect an
energy contribution due to electronic equilibrium with the bulk,

(10)μs = μ0
s + RT ln(Γs) + (qs − qO)EF (xν),

where qs − qO is the change in surface charge created when a
lattice oxygen at the surface is replaced by a surface vacancy
(Fig. 4b). For example, if oxygen ions on the surface have the
same partial charge as they do formally in the bulk (O2−), then
qs − qO = 2, and thus the energetic dependence of the surface
vacancy chemical potential on xν would be the same as for bulk
vacancies. Likewise, if the charge on surface atoms were zero,
then qs −qO = 0, and the chemical potential of unoccupied sites
would depend only on their configurational entropy. How μ0

s

depends on bulk acceptor doping (x) is unknown. For example,
in La1−xSrxCoO3−δ , any preference for La or Sr at the surface
might tend to alter the dependency of μ0

s on x relative to μ0
ν(x).

Extending the same arguments to adsorbed molecular oxy-
gen, we also have

(11)μsO2 = μ0
sO2

+ RT ln(ΓsO2) + (qO2 − qO)EF (xν).

2.4. Identification of the entropic and energetic components of
the driving force

From here, the procedure is straightforward. Substitution of
Eqs. (8)–(11) into the equilibria of Eq. (5) yields

(12a)0 = RT ln

(
PO2Γs

ΓsO2

)
− (

μ0
sO2

− μ0
O2

− μ0
s

) + qadsEF ,

(12b)0 = RT ln(ΓsO2Γs) − (−μ0
sO2

− μ0
s

) + qdissEF ,

(12c)0 = RT ln

(
xν

Γs

)
− (

μ0
s − μ0

ν(x)
) + qincorpEF ,

and overall reaction:

(12d)0 = RT ln
(
PO2x

2
ν

) − (−μ0
O2

− 2μ0
ν(x)

) + 4EF .

From Eq. (12), the entropic and nonideal energetic components
of the free-energy driving forces for each reaction can be readily

Table 1
Components of thermodynamic driving force for adsorption, dissociation, and
incorporation of oxygen into a mixed conducting oxide (see Eqs. (5), (6),
and (13))

Step (j ) Qj �Ej �G0
j

Adsorption
PO2

Γs

ΓsO2
qadsEF μ0

sO2
− μ0

O2
− μ0

s

Dissociation ΓsΓsO2 qdissEF −μ0
sO2

− μ0
s

Incorporation xν
Γs

qincorpEF μ0
s − μ0

ν

Total reaction PO2x2
ν 4EF −μ0

O2
− 2μ0

ν

identified and described in the form

(13)Λj = RT lnQj − �G0
j + �Ej ,

with values of Qj , �G0
j , and �Ej given in Table 1 for the

three steps in Eq. (5). Substitution of Eq. (13) into Eq. (6) for
each of the three reactions yields a complete set of kinetic rate
expressions that can be solved for a given overall driving force
(in terms of PO2 and xν ), as well as kinetic and thermodynamic
parameters.

The last line in Table 1 reveals that the overall driving force
for the reaction is a displacement in the bulk vacancy concen-
tration for equilibrium with the gas,

Λ = RT ln
(
P

gas
O2

x2
ν

) − �G0
rxn(x) + 4EF

(14)= RT ln

(
P

gas
O2

f solid
O2

)
,

where for convenience we have reexpressed the bulk vacancy
mole fraction xν in terms of the oxygen fugacity in the solid,
f solid

O2
, defined as the PO2 that would be in equilibrium with the

solid at composition xν . The variables f solid
O2

and xν are interre-

lated by Eq. (14) when f solid
O2

= P
gas
O2

:

(15a)f solid
O2

= x−2
ν e(�G0

rxn(x)−24xν/g0)/RT

and

(15b)xν = g0RT

12
W

(
12

g0RT
e(�G0

rxn(x))/2RT
(
f solid

O2

)−1/2
)

,

where W(z) is Lambert’s function, defined such that z =
W(z)eW(z). These variables can then be related to the Fermi
energy via Eq. (9). Equation (15), which is an expression of
equilibrium within the solid phase, also demonstrates that the
kinetics obey thermodynamics in the limit of equilibrium.

Assuming that the driving force Λ is known, the net rate of
the reaction r can be determined by simultaneous application of
Eqs. (13)–(15), with EF (xν) given by Eq. (9). In general, this
is a transcendental problem requiring simultaneous numerical
calculation of the reactive intermediate concentrations.

2.5. Introduction of a rate-determining step

An enormous simplification of the kinetics in Eqs. (13)–
(15) is possible if one the three steps (m) in Eq. (5) is rate-
determining, whereas the others (j �= m) are quasi-equilibrated.
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Table 2
Stoichiometric ratio and rate prefix associated with each of various rate-limiting steps (see Eqs. (16) and (17))

Limiting step λm RT ln�0,m

Adsorption (Eq. (5a)) 1 RT ln
kadsPO2√

f solid
O2

− �G0
f,ads + �G0

ads+�G0
diss

2 + qads(1−2βads)−qdiss
2 EF (f solid

O2
)

Dissociation (Eq. (5b)) 1 RT ln
( kdissP

gas
O2

f solid
O2

) − �G0
f,dis + �G0

dis − βdisqdisEF (f solid
O2

)

Incorporation (Eq. (5c)) 2 RT ln
( kincorp

2
√

f solid
O2

) − �G0
f,incorp + �G0

rxn
2 − ((1 − βincorp)qincorp − 2)EF (f solid

O2
)

Table 3
Predicted dependency of �0 on PO2 and T for each of the limiting steps in Table 2 (see Eqs. (25)–(29))

Limiting step n = ∂ ln�0

∂ lnP
eqb
O2

∣∣∣∣
T

Eeff
A = − ∂ ln�0

∂(1/RT )

∣∣∣∣
PO2

Adsorption (Eq. (5a))
1

2
+ qdiss − (1 − 2βads)qads

8
(1 + 2γ ) �H 0

f,ads − �H 0
ads + �H 0

diss
2

+ qdiss − qads(1 − βads)

2

∂(EF /RT )

∂(1/RT )

Dissociation (Eq. (5b))
βdissqdiss

4
(1 + 2γ ) �H 0

f,diss − �H 0
diss + βdissqdiss

∂(EF /RT )

∂(1/RT )

Incorporation (Eq. (5c)) γ − (1 − βincorp)qincorp

4
(1 + 2γ ) �H 0

f,incorp − �H 0
rxn

2
+ (2 − (1 − βincorp)qincorp)

∂(EF /RT )

∂(1/RT )
In this limit, the driving force for the rate-limiting reaction
step (Λm) becomes proportional to the total driving force Λ,
whereas the driving forces for the other two reactions (Λj �=m)
approach zero [46]:

(16)Λm = Λ

λm

= RT

λm

ln

(
P

gas
O2

f solid
O2

)
and Λj �=m = 0,

where λm = rm/r is the stoichiometric ratio between rm and r

under quasi-steady conditions.
Substitution of Eq. (16) into Eq. (13) allows the concentra-

tions of the surface intermediates (Γs , ΓsO2 ) to be reexpressed
in terms of P

gas
O2

and f solid
O2

. The rate is then determined by the
rate expression for the mth step according to Eqs. (6) and (16).
The result can be written in the form

(17)r = �0,m

[
1 − e−Λ/(λmRT )

]
,

where λm and �0,m are given in Table 2 for each of the three
steps as rate-limiting. In these expressions, the variables f solid

O2
and xν are interchangeable according to Eq. (15).

2.6. Extension of the analysis to P-type semiconductors

We now extend the theory in Sections 2.1–2.5 for the case
of a mixed conductor with more localized band structure. Un-
like in a metal, the energies of electrons and holes in a semi-
conductor are determined by the energies of the (fixed) band
edges [15], and thus (to first approximation) are independent of
electron occupation. Meanwhile, the configurational entropies
of electrons and holes are not fixed (as in a metal), but are
expected to vary according to mass action. With these simplifi-
cations, we expect rate expressions derived by previous workers
(under the assumption of point defect theory [10,20–22]) to al-
ready be consistent with thermodynamics. However, here we
depart from previous models in two ways. First, unlike many

models that assume low surface coverage, we apply the assump-
tions of Section 2.2, in which adsorbates must compete for a
small number of surface oxygen vacancies. Second, instead of
incorporating electron or hole mass action in the kinetics (from
the beginning), we show, using our formalism, that n-type,
p-type, or p–n transitional materials can all be treated using
a single rate expression by incorporating electron and hole con-
figurational entropy into the thermodynamics. Electron or hole
mass action emerges naturally when shifts in Fermi energy are
accounted for in terms of electron and hole concentrations.

With this approach, Eqs. (5)–(14) and Tables 1–3 remain
valid for a semiconductor as well as for a metal, with the ex-
ception of Eq. (9). The distinction arises in treating the re-
lationship of Fermi energy to composition and temperature,
EF (f solid

O2
, T ). Instead of Lankhorst’s model for a metallic

mixed conductor, we must instead apply a model appropriate
to a semiconductor. Following Newman’s treatment of semi-
conductor electrodes [15], the Fermi energy can be written in
terms of electron or hole entropies as

(18)EF = −RT ln

(
ch

NVB

)
= Egap + RT ln

(
ce

NCB

)
,

where EF is defined relative to the valance band edge, ce and
ch are the electron and hole concentrations, Egap is the band
gap, and NVB and NCB are the effective densities of states of
the valance and conduction bands, respectively. Equation (18)
can be rearranged to reveal electron–hole equilibrium,

(19)

(
ce

NCB

)(
ch

NVB

)
= xexh = e−Egap/RT = Knp,

where Knp is an equilibrium constant for electron and hole
creation (defined in terms of fractional band occupancies,
xe and xh). Concentrations of electrons, holes, and oxygen va-
cancies are further constrained by electroneutrality [47]

(20)2c0xν + NVBxh − NCBxe − c0x

3
= 0,
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where x is the number of acceptor dopants per 3 oxygen sites.
Simultaneous application of Eqs. (18)–(20) and Eq. (14) (with
Λ = 0) allow xν , xh, and xe to be expressed in terms of f solid

O2
,

thus completing the connection between EF and f solid
O2

. The rate
expressions for the three rate-limiting steps discussed in Sec-
tion 2.5 are then given in Table 2.

2.7. Connection to mass action for n-type and p-type
materials

Note that in Eq. (14), electron or hole populations enter the
driving force through EF , rather than as explicit mass action
effects. Because we have assumed point defect theory, we ex-
pect these views to be equivalent. To see this, we can examine
the individual rate laws with the electron or hole concentra-
tions identified explicitly. As an example, the dissociation step
[Eq. (6b)] can be rearranged as

rdiss = kdisse
−�G0

f,diss/RT
e(1−βdiss)qdissEgap/RT ΓsΓsO2x

(1−βdiss)qdiss
e

(21a)× [
1 − e−Λdiss/RT

]
.

If βdiss = 0 (barrier height remains fixed for the reverse reac-
tion), this can be further rearranged into a simple mass action
rate expression of order x

qdiss
e in the forward direction,

rdiss = kdisse
(−�G0

f,diss+qdissEgap)/RT
ΓsΓsO2x

qdiss
e

(21b)− kdisse
−�G0

b,diss/RT
,

where qdiss is the number of electrons transferred (including
upstream equilibrated steps). The forward Arrhenius factor in-
cludes the band gap, because we arbitrarily defined the valance
band energy as zero.

Likewise, for a purely p-type semiconductor, we expect the
hole concentration to enter through the reverse reaction rate.
This corresponds to the case where β = 1 (the barrier height
remains fixed for the forward reaction). This can be seen by
rearranging Eq. (6b) once again,

(21c)
rdiss = kdisse

−�G0
f,diss/RT

ΓsΓsO2 − kdisse
−�G0

b,diss/RT
x

qdiss
h ,

where the reverse reaction is or order x
qdiss
h (including down-

stream equilibrated steps).
If an energy barrier to charge transfer exists, then the value

of β is expected to deviate from 0 or 1 even in a pure n-type
or p-type material. Likewise, if no energy barrier exists, but the
material is near a p–n transition, then β is also expected to be
between 0 and 1, depending on the relative importance of elec-
trons or holes in the charge-transfer process. Finally, for sys-
tems with a small band gap, or materials undergoing a metal–
insulator transition, it becomes less meaningful to treat elec-
trons and holes explicitly, and thus the case of 0 < β < 1 could
represent a mix of mass action and energetic effects. These ex-
amples illustrate the fundamental inseparability of mass action
and energetic effects in systems with complex electronic struc-
ture. In the absence of detailed independent information about
these factors, the interpretation of a measured noninteger β is
not likely to be unique.

3. Comparison of model predictions to published
equilibrium exchange rates for metallic La1−xSrxCoO3−δ

and p-type La1−xSrxFeO3−δ

3.1. Challenges to comparing theory with experimental data

Although many workers have measured O2-exchange ki-
netics on perovskite mixed conductors, a direct comparison
of these measurements to Eq. (17) and Table 2 is challeng-
ing. First, the vast majority of these measurements have been
made under equilibrium or near-equilibrium conditions. In this
situation, it is not possible to probe the bracketed force–flux re-
lationship in Eq. (17) directly. Instead, workers have generally
tried to measure the limiting equilibrium value of �0 (exchange
rate) over a range of governing parameters such as T and PO2 ,
and then compared these dependencies to models for the mech-
anism.

Second, the techniques used to measure these equilibrium-
exchange rates typically require a significant level of modeling
and interpretation. For example, one popular class of methods
involves equilibrating a sample at a chosen T and initial P 0

O2
,

and then stepping the PO2 suddenly by some small amount to
a new value, P 1

O2
. The average vacancy concentration in the

sample is then monitored as it approaches equilibrium, using an
appropriate secondary indicator, such as electrical conductivity,
lattice volume, or mass [2–6]. The data are then fit to a linear
model for the kinetics and diffusion. The exchange rate can then
be calculated from the surface rate coefficient by linearization
of Eq. (17),

(22)�0 = λRT

(
∂r

∂Λ

)
T

,

where (∂r/∂Λ)T is the surface rate coefficient, written here in
terms of a chemical potential driving force.

In interpreting these measurements, workers usually make
the assumption of linearity. But the PO2 step sizes used are
seldom small enough to rigorously qualify as linear, and thus
misattribution of nonexponential kinetic relaxation to diffu-
sion is likely. In measurements of expansion relaxation of
La1−xSrxCoO3−δ , we have also found evidence of strong hys-
teresis in the surface exchange coefficient, further complicating
interpretation (X.Y. Chen and S.B. Adler, unpublished data).
In addition, to obtain �0 from Eq. (17), we must specify λ,
which is usually not known a priori. We must assume a rate-
determining step involving diatomic oxygen for λ = 1. Finally,
workers often do not calculate �0, but rather report (∂r/∂Λ)T
in the form of a linearized rate coefficient specific to a particu-
lar species (e.g., kδ [10], Kex [48], or Ktr [49]). To use Eq. (22),
we must know the thermodynamic properties of the material
to convert these other coefficients to RT (∂r/∂Λ)T (in mol of
O2/cm2/s). As an example, if we define oxygen flux to the sur-
face as r = − 1

2Ktr([OX
O ]eqb −[OX

O ]) [49], then RT (∂r/∂Λ)T is
calculated as

RT

(
∂r

∂Λ

)
T

= − ∂r

∂ ln(f solid
O2

)

(23)= −xν

∂r

∂xν

γ = xνc0
∂r

∂[OX
O ]γ = −xνc0

Ktr

2
γ,
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where c0 is the oxygen site concentration in the lattice and

(24)γ =
(

∂ lnxν

∂ lnf solid
O2

)
T

is a thermodynamic factor relating vacancy concentration and
PO2 .

As an alternative to the transient driving force experiments
discussed above, workers have also tried to measure �0 “direct-
ly” using isotope tracer techniques. In this experiment, the sam-
ple is first equilibrated at T and PO2 , and then the 16O2 in the
sample chamber is replaced by 18O2. Some time later the sam-
ple is quenched, and the isotope profile is fit to determine the
tracer diffusion coefficient D∗ and k∗ = 2�0/c0, where k∗ is
the surface isotope-exchange coefficient [8]. Although knowl-
edge of λ is not required in this experiment, it must be assumed
that there are no other parallel mechanisms by which the isotope
may exchange with the solid [10]. For example, imagine that
adsorbed 18O2 could directly swap one labeled oxygen atom for
an unlabeled atom from the solid to form 18O16O, without ever
crossing the full dissociation barrier [11]. If this process has a
lower activation energy than dissociative exchange, then it will
occur at a faster rate. Workers usually do not consider this pos-
sibility, but it is a source of uncertainty if the mechanism turns
out to involve an energetic barrier to O2 dissociation.

3.2. Predicted dependence of the equilibrium exchange rates
on T and PO2

Given the issues outlined above (and the fact that most
exchange data are reported on a log–log or Arrhenius plot),
one approach to comparing Eq. (17) to exchange data is in
terms of the local T and PO2 dependencies of �0. This can
be accomplished straightforwardly by replacing both P

gas
O2

and

f solid
O2

in Eq. (17) with the equilibrium value, P
eqb
O2

, and then

taking the derivative with respect to T and P
eqb
O2

. This cal-
culation yields the local PO2 exponent of the exchange rate,

n = (∂ ln�0/∂ lnP
eqb
O2

)T , and an effective Arrhenius energy,

Eeff
A = −(∂ ln�0/∂(1/RT ))PO2

. The results for the three lim-
iting steps outlined in Table 2 are given in Table 3, where we
have also defined �Hi = �Gi + T �Si .

As part of this calculation, it is necessary to determine the
dependencies of EF on fO2 and T . For a metallic mixed con-
ductor, these dependencies are given by

(25a)
∂EF

∂ lnf solid
O2

∣∣∣∣
T

= −RT

4
(1 + 2γ )

and

(25b)
∂(EF /RT )

∂(1/RT )
= �H 0

rxn + 2RT

4
(1 + 2γ ),

where

(26a)γ = ∂ lnxν

∂ lnf solid
O2

∣∣∣∣
T

= −1

2

(
1 + W

(
ε/

√
f solid

O2

))−1

and

(26b)ε = 12

g0RT
e(�G0

rxn(x))/2RT ,

where ε is a dimensionless group reflecting the relative im-
portance of electron energy versus vacancy configurational en-
tropy. We likewise can calculate the analogous quantities for
a p-type mixed conductor. Let us assume that electrons con-
tribute negligibly to electroneutrality (xe = 0 in Eq. (20). This
allows the internal defect equilibria [Eqs. (14), (19), and (20),
with Λ = 0] to be solved in closed form for EF (f solid

O2
). The

result is

(27)EF = −RT ln

(−4xmax
h γ

(1 − 2γ )

)
,

where

(28a)γ = ∂ lnxν

∂ lnf solid
O2

= −1

2

(
1 + ε/

√
f solid

O2

)−1/2

and

(28b)ε = 4
(
xmax
h /x∞

h

)2
,

and

(28c)xmax
h = lim

f solid
O2

→∞
xh = c0x

3Nvb
,

(28d)x∞
h =

limf solid
O2

→0 xh

(f solid
O2

)1/4
= e−�G0

rxn/4RT

√
x

6
,

where here the dimensionless group ε takes on a slightly differ-
ent meaning than it did for a metal. For a p-type semiconduc-
tor, it reflects the relative importance of hole configurational
entropy versus vacancy configurational entropy. Taking deriva-
tives with respect to f solid

O2
and 1/RT , we obtain

(29a)
∂EF

∂ lnf solid
O2

∣∣∣∣
T

= −RT

4
(1 + 2γ )

and

(29b)
∂(EF /RT )

∂(1/RT )

∣∣∣∣
f solid

O2

= 1

4
�H 0

rxn(1 + 2γ ).

Comparing Eqs. (25) and (29) shows that the effect of bulk
vacancy defect thermodynamics on the exchange kinetics is
nearly the same for metallic and semiconducting materials and
can be summarized by a single function: γ (T ,PO2). In other
words, given the same kinetic assumptions, a metallic and semi-
conducting material will still differ substantially due to funda-
mental differences in thermodynamic behavior. This is a key
aspect of the kinetics that is usually ignored in kinetic analyses
based purely on mass action.

In situations where γ (and the mechanism) remain constant,
log(�0) is expected to vary linearly with log(PO2) and 1/RT ,
according to the slopes in Table 3. In situations where γ varies
significantly over a range of data, the expressions for n and/or
Eeff

A in Table 3 can be reintegrated to predict how log(�0) will
vary nonlinearly with log(PO2) and 1/RT .
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Fig. 5. Qualitative plots of relative probability p (defined in Section 3.3) of various configurations along the reaction coordinate for four scenarios considered in
modeling the oxygen exchange rate on La1−xSrxCoO3−δ and La1−xSrxFeO3−δ . Increasing values of −RT ln(p) indicate less probable configurations, such that
peaks correspond to possible rate-limiting transitions states. All four scenarios assume that monatomic oxygen at the surface has the same negative charge as bulk
oxygen ions. In (a) and (b), the reaction is assumed to involve a highly unstable physisorbed diatomic intermediate. In (a), the reaction is limited by formation of a
somewhat more stable chemisorbed diatomic intermediate (superoxide), followed by equilibrated 3-electron reduction (“chemisorption limited”). In (b), the reaction
is limited by a low probability of finding a second vacancy near the unstable physisorbed intermediate, whereupon rapid 4-electron reduction occurs (“dissociative
adsorption-limited”). Whether (a) or (b) dominates depends on the relative probabilities of O2 + e− → O−

2 (energy barrier) vs O2 +VOs → 2OOs (entropy barrier).
In (c), the rate-limiting step is assumed to involve dissociation of superoxide via an energy barrier (“dissociation-limited”). In (d), the surface is assumed equilibrated
with the gas, and the rate-limiting step is exchange of oxygen vacancies with the bulk (“incorporation limited”).
3.3. Limiting cases of the kinetics considered for comparison

The remaining parameters influencing n and Eeff
A in Table 3

are related to our assumptions about the kinetics. In what fol-
lows, we consider four representative scenarios:

(a) Chemisorption-limited. The reaction is assumed to be lim-
ited by adsorption [Eq. (5a)], with superoxide O−

2 ((O2)
·
Os

in Kröger–Vink notation) as the diatomic intermediate:
qads = 1, qdiss = 3. The transition state is assumed to in-
volve an energetic activation barrier to charge transfer,
�H 0

f,ads, with βads = 0.5 (for a metal) or βads = 1 (for a
p-type semiconductor).

(b) Dissociative-adsorption limited. The reaction is assumed
to be limited by dissociation [Eq. (5b)], with physisorbed
oxygen as the diatomic intermediate: qads = 0, qdiss = 4.
The transition state is assumed to involve no energy barrier
(�H 0

f,diss = 0), but remains limited by the low probabil-
ity of an unstable physisorbed molecule interacting with
a second surface vacancy before desorption. Because this
probability is governed purely by mass action in the for-
ward direction, βdiss = 1.

(c) Dissociation-limited. The reaction is assumed to be dis-
sociation limited [Eq. (5b)], where superoxide dissocia-

tion involves an energetic activation barrier (qdiss = 3 and
βdiss = 0.5). Note that this does not imply a three-electron
reaction, only that the apparent reaction order is 3 in elec-
tronic species due to equilibration of downstream steps.

(d) Incorporation-limited. The gas is assumed to be equili-
brated with the surface, and thus the reaction is limited by
exchange of vacancies with the bulk [Eq. (5c)]. Because
we have assumed that the oxide surface is fully reduced,
qincorp = 0.

Fig. 5 depicts these four scenarios qualitatively in terms of
the relative probability p of various configurations along the
reaction coordinate. The mathematical definition of p could
be any appropriately scaled composition variable (e.g., atom
density, partial pressure, mole fraction); however as envisioned
here, it is assumed normalized in some way as to be compa-
rable among gas, surface, and bulk species. Thus, increasing
values of −RT ln(p) indicate less probable configurations, and
peaks in −RT ln(p) along the reaction coordinate correspond
to transition states. For example, in Fig. 5a, physisorbed O2
is unstable relative to the gas phase due to a negative entropy
of adsorption, and thus has a higher values of −RT ln(p). A
physisorbed oxygen adjacent to a second vacancy is even less
probable, and thus appears even higher on the −RT ln(p) scale.
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Likewise, an energetic transition state (en route to chemisorbed
oxygen) would also be less populated than physisorbed oxy-
gen (Fig. 5b). Given similar pre-exponential factors, the rela-
tive rates of chemisorption versus dissociative adsorption would
be determined by these bottleneck configurations. In following
sections, we compare the calculated exchange rate for these sce-
narios with measured values for La1−xSrxCoO3−δ (LSC) and
La1−xSrxFeO3−δ (LSF).

3.4. Comparison to measured oxygen exchange rates on
La1−xSrxCoO3−δ (LSC)

The thermodynamic properties of La1−xSrxCoO3−δ (LSC)
are reasonably well understood, exhibiting values of γ span-
ning −1/2 (for small values of x and xν ) to ∼−0.05 for heavily
doped LSC at the highest temperatures and lowest PO2 ’s that
are stable [50]. Fitting of Eq. (15) to gravimetric and coulomet-
ric titration data [50,51] provides the values of g0, �H 0

rxn, and
�S0

rxn, as summarized by Lankhorst [9]. From these parame-
ters, γ (T ,PO2) may be calculated as a function of ε according
to Eq. (26b), and substituted into the expressions for n in Ta-
ble 3. These expressions also can be integrated to predict how
log(�0/�0|PO2=1 bar) will vary with log(P

eqb
O2

).
The results of this calculation, for representative values of

ε, are given in Fig. 6 for the each of the scenarios outlined in
Fig. 5. These plots illustrate two related observations. First, de-

pending on the scenario, the predicted slope of log(�0) versus
log(PO2) is generally not a constant, but depends on the range
of PO2 ’s over which data is collected. This may help explain the
very wide range of values for n reported by different workers
for nominally the same materials [20,49,52–55]. Second, ex-
cept for case (d), the slopes of different scenarios match each
other under certain conditions, making it difficult to determine
which scenario (if any) is operative based solely on an aver-
age value of n calculated over a particular narrow range of PO2 .
A better approach is probably to examine �0 over a wide range
of x,T , and PO2 so that overall trends can be more clearly seen.

The most complete study to date of equilibrium O2 exchange
on LSC versus x, T , and PO2 has been published by van de Haar
and coworkers [49]. With permission from these authors, we
have obtained their raw data for Ktr(x,T ,PO2) (measured by
conductivity relaxation), calculated �0(x,T ,PO2) according to
Eqs. (23)–(24) (assuming λ = 1 and Lankhorst’s model for xν ),
and normalized to PO2 = 1 atm. Resulting data for x = 0.2,
0.5, and 0.7 at 750 ◦C is shown in Fig. 6b. Comparing this
data to the scenarios in Fig. 6, it would appear that scenario
(b) (dissociative adsorption) is overall the most consistent with
the PO2 dependance of the exchange rate. This scenario most
closely matches the slope and curvature of the data, including
the saturation (n → 0) under conditions of low oxygen vacancy
concentration (small ε). Note that this is a theoretical prediction
of the exchange rate based on the measured thermodynamics
Fig. 6. Theoretical predictions of the equilibrium O2 exchange rate �0 of La1−xSrxCoO3−δ vs log(P
eqb
O2

) and log(ε) (as defined in Eq. (26b)) for the four scenarios
outlined in Fig. 5: (a) chemisorption limited; (b) dissociative adsorption limited; (c) dissociation limited; and (d) incorporation limited. Data in (b) are experimental
values of �0 at 750 ◦C from reference [49], converted to �0 from Ktr as described in text. Circles, triangles, and diamonds correspond to x = 0.2, 0.5, and 0.7.
These data represent a range of log(ε) of −1.4 (for x = 0.2) to 2.8 (for x = 0.7), as calculated from the nonstoichiometry model.
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Fig. 7. Measured equilibrium O2 exchange rate �0 of La0.8Sr0.2CoO3−δ vs
log(PO2 ) and T (from Ref. [49], converted to �0 from Ktr as described in text).
Circles, triangles, and diamonds correspond to T = 750, 800, and 850 ◦C, re-
spectively. These temperatures also correspond to log(ε) = −1.36, −1.01, and
−0.69, respectively. Simulations for log(ε) = −1.5, −1, and −0.5 are shown
for comparison.

and the kinetic assumptions in Fig. 5, with no adjustable para-
meters except magnitude [�0 (1 atm)].

Fig. 7 shows the measured exchange rate of LSC-82 (x =
0.2) versus PO2 and T , along with the predictions of sce-
nario (b) (dissociative adsorption) at similar values of log(ε).
This calculation involves one independent adjustable parame-
ter: the kinetic rate constant, which shifts the simulations up
or down on the logarithmic plot. In the low-PO2 regime, the
simulations correctly predict the observed increase in n (slope)
with increasing temperature. The simulations are also consis-
tent with the observed reduction in apparent activation energy
with decreasing PO2 , from an effective activation energy of
Eeff

A ∼ 330 kJ/mol at ∼1 atm, decreasing by ∼50% at the low-
est PO2 ’s probed. Examining the predictions for scenario (b)
from Table 3, we would expect (for �H 0

f = 0 and βdiss = 1)

(30)Eeff
A = (−�H 0

diss

) − (−�H 0
rxn − 2RT

)
(1 + 2γ ).

This predicts a decrease in Eeff
A with decreasing PO2 , as

−1/2 → γ → 0, in agreement with the observed trend. Al-
though the data are very noisy at high PO2 , agreement may
begin to break down at the highest values of PO2 , where n ap-
pears to become somewhat negative. This might suggest the
onset of incorporation limitations under conditions of low va-
cancy concentration, where we predict �0 ∼ P

−1/2
O2

(Fig. 6d).
If our interpretation of the dominant trends discussed above

are correct, then oxygen reduction is limited by dissociative
adsorption, at least at moderate PO2 ’s probed by the measure-
ments. If correct, this result shows that even when no energetic
barrier exists (�H 0

f = 0), a significant Arrhenius dependence
will still occur due to thermodynamics—in this case, the heat of
dissociative adsorption. For example, for x = 0.2, at the high-
est PO2 ’s shown in Fig. 7, γ approaches −1/2, and Eq. (30)
predicts that Eeff

A → −�H 0
diss. Since Eeff

A ∼ 330 kJ/mol, this
implies �H 0

diss ∼ −330 kJ/mol, which is similar in value to
the total �H 0

rxn(x) at x = 0.2 [40]. In other words, most of the

enthalpy of the reaction is tied to the dissociation step. This Ar-
rhenius dependence influences the exchange rate through the
surface vacancy concentration, which declines sharply with de-
creasing temperature.

3.5. Comparison with equilibrium oxygen-exchange rates on
La1−xSrxFeO3−δ (LSF)

To illustrate the difference between a metallic mixed con-
ductor and a p-type mixed conductor, we have calculated the
expected T and PO2 dependencies of the exchange rate on
La1−xSrxFeO3−δ (LSF), an electron-rich p-type mixed con-
ductor. We only show results for scenarios (a) and (b) in Fig. 5
because the results for the scenarios (c) and (d) are so far off
from measured values. Since charge transfer is limited in this
case by hole mass action, we assume βj = 1 (as discussed in
Section 2.7) for both scenarios (a) and (b).

The oxygen-exchange thermodynamics of LSF are well un-
derstood, and have been modeled previously by Mizusaki and
coworkers [47]. It is straightforward to convert the parameters
of their model to those defined in this paper, thereby providing
the functional dependence of γ (x,T ,PO2). The specific trans-
lation is �G0

rxn − 4RT lnNVB = 2(�HO − T �SO) [47].
Fig. 8 shows the results of this calculation at representa-

tive vales of log(ε). The predictions are rather similar to those
for LSC, although some subtle differences are present. The
chemisorption-limited case generally exhibits a more variable
value of n, varying between 0.5 and 1 over the range of the
simulations. For the dissociative-adsorption case, a saturation
of the exchange rate is predicted at increasingly negative values
of log(ε).

Ten Elshof and coworkers have measured the oxygen-
exchange rate on LSF (x = 0.1 and 0.4) as a function of
log(PO2) = −5.5 ∼ 0 and T = 650–950 ◦C [48]. In this case,
these authors converted their measurements of the chemical-
exchange coefficient “Kex” to an effective isotope-exchange
coefficient “k0” (proportional to �0). (We have repeated this
conversion independently, and agree with it.) In general, their
data show that n falls in a much narrower range of values for
LSF than LSC, varying from 0.5 to 1 over a similar range of
conditions. Fig. 8a shows representative data for LSF over a
similar range of log(ε) covered by the simulations. In particular,
the apparent saturation of �0 at low ε predicted by scenario (b)
does not occur in LSF as it did in LSC. Overall agreement
is much better for scenario (a) in the case of LSF, suggest-
ing that the rate-limiting step may be chemisorption. This is in
general agreement with ten Elshof et al., who posited that the
rate-limiting step involved molecular O2 and one vacancy [48].

Another factor consistent with this diagnosis is the effective
activation energy. Substitution of Eq. (29b) and βads = 1 into
Table 3 reveals that for scenario (a), �Eeff

A should become equal
to �H 0

f,ads + �H 0
incorp in the limit of large ε, which might be

smaller than the energy barrier itself (�H 0
f,ads) due to a small

but possibly negative �H 0
incorp. This is consistent with the data,

which show a decreasing dependence on T at the highest tem-
peratures [48].
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Fig. 8. Theoretical predictions of the equilibrium O2 exchange rate �0 of La1−xSrxFeO3−δ (LSF) vs log(P
eqb
O2

) and log(ε) (as defined in Eq. (28b)) for the two

scenarios outlined in Figs. 5a and 5b. Data in (a) are normalized experimental values of k0 (proportional to �0) from Ref. [48] for x = 0.1 at 725 ◦C (circles),
x = 0.1 at 875 ◦C (triangles), and x = 0.4 at 950 ◦C (squares). These three conditions correspond to log(ε) = −3, −1.5, and 0, respectively, as calculated from the
nonstoichiometry model.
Why LSF and LSC might differ in mechanism is a subject
worthy of speculation. Comparing Figs. 4a and 4b shows that
these mechanisms are not radically different, but involve two
competitive, possibly parallel pathways. It scenario (a), it is
more probable that physisorbed O2 will find another vacancy
and dissociate (with no activation energy) rather than cross an
activation barrier and become chemisorbed. In scenario (b), the
order is reversed; it is more probable that physisorbed O2 will
cross an energetic barrier to become stabilized as a chemisorbed
intermediate rather than find a second vacancy and dissociate
before desorption.

The relative probability of these two competing transition
states can be compared mathematically by calculating the tran-
sition probabilities for these two competing processes. Let us
define p in this case as the equilibrium exchange rate �0 (as
given in Table 2) divided by the pre-exponential factor, evalu-
ated at PO2 = 1 atm. Assuming that the Fermi level contribution
to the kinetics is comparable in both scenarios, �G0

incorp ∼ 0
(vacancies are equally stable on the surface as in the bulk) and
�G0

f,diss ∼ 0 (no significant energy barrier for dissociation), we
obtain

(31a)scenario (a): −RT ln(p) = �G0
f,ads

RT
+ −�G0

rxn

2RT

and

(31b)scenario (b): −RT ln(p) = −�G0
diss

RT
.

This comparison illustrates the essential difference between
these two cases. When chemisorption is rate controlling
[Eq. (31a)], the reaction is limited partly by free surface site
availability (determined by �G0

rxn) and partly by an energetic
barrier to charge transfer (�G0

f,ads). As such, this scenario
fits within our traditional view of an activated process (en-
ergy barrier). When dissociative adsorption is rate-controlling
[Eq. (31b)], the reaction is limited entirely by site availability
relative to the physisorbed state (�G0

diss = �G0
rxn − �G0

ads).
This scenario stands at odds with our traditional view of an ac-
tivated process, because no energetic barrier is required. It is

an “entropy barrier”—a bottleneck to the reaction that involves
a highly disfavored (improbable) statistical configuration unre-
lated to a Boltzmann activation factor.

Because �G0
ads is expected to be positive, whereas �G0

rxn is
negative, −�G0

diss decreases as the physisorbed state becomes
increasingly stable. Thus if the activation energy for chemisorp-
tion is relatively high (�G0

f,adsis large), and the physisorbed

state is relatively stable (−�G0
diss is low), the barrier to dis-

sociative adsorption will be lower than that for chemisorption
(Fig. 5b). In this case, it is more likely that a collision with a sec-
ond vacancy will occur before the transition to the chemisorbed
state. In contrast, if the activation energy for chemisorption is
relatively low, and the physisorbed state is relatively unstable
(−�G0

diss is large), chemisorption will control (Fig. 5a).
Based on these considerations, we can speculate that the dif-

ference between LSC and LSF may have to do with the metallic
band structure of LSC, which would tend to stabilize the ph-
ysisorbed state. This may serve as a partial explanation for
why LSC generally has better initial performance as a solid
oxide fuel cell cathode than LSF, particularly on ceria where
resistances at the solid–solid interface are small compared with
those of zirconia [1]. This may also helps explain the success
of the ceria-based fuel cell cathode La0.4Sr0.4Co0.2Fe0.8O3−δ .
Perhaps it has sufficient cobalt to create delocalized electronic
states at the surface, while remaining generally more thermody-
namically stable that LSC. This may also partially explain the
very high apparent oxygen exchange rates reported for more
recently discovered SOFC cathode materials BSCF and PBCO
[56,57], which appear to be very highly conductive metals un-
der SOFC operating conditions.

4. Questions for discussion

Reinterpretation of published oxygen exchange rates on
mixed conductors using the theory presented in this paper
(Section 3) suggest that O2 reduction on electron-rich mixed-
conducting oxides is limited by adsorption rather than an en-
ergetic barrier to dissociation. This conclusion stands in con-
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trast to conventional wisdom, which generally views O2 as a
difficult-to-activate molecule. These tentative conclusions are
based on limited data involving many uncertainties of proce-
dure, interpretation, and analysis, and thus are far from defin-
itive. However, they raise a number of questions for consider-
ation by other workers and for motivating current and future
research.

4.1. What is the surface structure, and which reactive
intermediates are relevant?

Published mechanisms for oxygen exchange on mixed con-
ductors (including some proposed by us [25]) often involve
unconstrained assumptions regarding surface coverage and the
identity of reactive intermediates. Proposed species include O2,
O−

2 , O2−
2 , O, O−, and O2−, with the degree of surface polar-

ization often left ambiguous; for example, does “O−” bonded
to the surface imply charge separation from the bulk, or sim-
ply a doubly charged ion where one of the electrons is involved
with a bond to the surface? Langmuir adsorption is also usually
assumed, implying that under some conditions, species could
adsorb noncompetitively on the oxide surface as if it were a
metal catalyst under high vacuum. Finally, as discussed in Sec-
tion 2.7, the implicitly assumed symmetry parameter β can
acquire an enormous span of values depending on the worker’s
assumptions about the role of electronic species and the tran-
sition state. With so many unconstrained possibilities, multiple
explanations for a given set of equilibrium exchange measure-
ments are almost guaranteed.

Examples of this inherent ambiguity are provided in the re-
cent literature. De Souza has summarized the oxygen isotope-
exchange properties for a variety of mixed conductors spanning
a wide range of electronic transference number [20]. His analy-
sis shows that the PO2 dependence of the oxygen-exchange rate
for all the materials can be correlated (within experimental er-
ror) to their individual thermodynamic properties using a single
empirical relationship,

(32)n = ∂ ln�0/∂ lnP
eqb
O2

= 1/4 − γ /2,

where γ = ∂ lnxν/∂ lnPO2 . For example, dilute p-type ion
conductors (which have γ = 0), are generally found to obey
n ∼ 0.25. Likewise, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), which
exhibits γ = −0.32 under the relevant measurement conditions,
is predicted by Eq. (32) to exhibit n ∼ 0.41, in good agreement
with the measured value of 0.39 ± 0.04.

At first glance, this correlation might suggest a common
mechanism for all materials. Applying mass action kinetics, De
Souza examined the possibility that O2 adsorbs dissociatively
in low coverage as “O” on the oxide surface, leading to an
equilibrium surface coverage proportional to P

1/2
O2

. Assuming
that charge transfer between surface and bulk is rate-limiting
(“O” � “O−”), this leads to an exchange rate that scales as
n = 1/4−γ /2, in agreement with the observed correlation [20].

But if we apply the theory developed in Section 3 to LSCF,
an alternate explanation emerges. If we assume that LSCF is
semimetallic and limited by dissociative adsorption, then we

would predict n = 1 + 2γ , which for the same value of γ pre-
dicts n = 0.36, also in agreement with the measured value of
0.39 ± 0.04. This comparison raises the possibility that the
correlation in Eq. (32) is simply fortuitous, and that the rate-
limiting step governing LSCF is different than that for dilute
p-type materials.

Which of these theories is correct (if any) is difficult to as-
sess without further information. To resolve this degeneracy,
one might try to examine the curvature (as well as the local
slope) of ln�0 vs lnP

eqb
O2

, but this puts a much more stringent
requirement on the range and precision of the data. Whether this
approach can really separate all possible scenarios is unclear.
In all likelihood, the true mechanism(s) cannot be determined
without a more definitive determination of the nonlinear ki-
netics and incorporation of independent information about the
surface structure and relevant reactive intermediates.

4.2. Is the reaction limited by an energetic barrier or site
availability?

Conventional wisdom holds that O2 is a difficult mole-
cule to activate energetically, which is why it is so difficult
to find an effective electrocatalyst for SOFC cathodes. How-
ever, the results in Section 4 call this assertion into question.
For electron-carrier-rich materials like LSC and LSF, it ap-
pears that dissociative adsorption (without an energy barrier)
or chemisorption may be limiting. It is emphasized that barriers
to these processes can be partially or wholly entropic (limited
by availability of intermediates or sites) rather than energetic.
The fact that the exchange rate has a strong Arrhenius depen-
dence cannot be taken as evidence for an activation barrier; a
strong Arrhenius dependence is expected even when the reac-
tion is limited by site availability, due to a negative enthalpy of
dissociative adsorption.

De Souza and Kilner [58] summarized the kinetic and dif-
fusion properties of various oxide ion conductors and found a
strong, general correlation between oxygen-exchange kinetics
and bulk oxygen ion transport. This correlation approximates
a power law, with b = ∂ ln k∗/∂ lnD∗. However, these authors
reported a notable difference in the value of b for electron-
carrier-poor versus electron-carrier-rich materials. For electron-
carrier-poor materials, b reaches values as high as 3–4. For
electron-rich mixed conductors, b falls in a range of 0.5–1. Be-
cause the activation energy for diffusion in most ion conductors
is similar, the stronger factor influencing b would be the rel-
ative Arrhenius dependencies of the kinetics. Thus a reduced
value of b for electron-rich materials may represent a change
from activation-limited dissociation to adsorption-limited dis-
sociation when electronic states at the Fermi level become plen-
tiful.

4.3. What is the reaction rate under moderate to high driving
force?

As discussed in Section 3.1, the uncertainties of experi-
mentation and interpretation of oxygen-exchange data make it
very difficult to conclude anything definitively. All conclusions
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drawn in this paper are made based on the PO2 and temper-
ature dependencies of the equilibrium exchange rate, which
(even if measured and interpreted correctly) is a very insensitive
measure of reaction order. The standard procedure for probing
reaction orders in chemical kinetics is to operate a differential
reactor far from equilibrium, allowing workers to isolate the
forward or backward reaction, and probe reaction orders with
respect to reactant concentrations. Likewise, in electrochem-
istry, the determination of Tafel slopes (anodic and cathodic
transfer coefficients) can provide information about mechanism
and rate-limiting steps. No such well-established methods have
been developed for oxygen exchange on mixed conductors,
which are usually operated near equilibrium, or as a membrane
or electrode where O2 reduction, O2 evolution, bulk and sur-
face transport, and charge transfer to/from other materials are
hopelessly convoluted.

To obtain the required information, new methods are needed
that can isolate oxygen-exchange rates under moderate to
large driving force, where the nonlinear characteristics of
Eq. (1) can be probed. In our laboratory, we are currently
developing techniques to do this, including nonlinear im-
pedance spectroscopy (NLEIS) of porous and thin-film mixed-
conducting electrodes [59]. We hope that the development
of this and other methods will prove useful (when combined
with other techniques) for probing the mechanism more defini-
tively.

5. Conclusion

Despite numerous studies of oxygen exchange and other
reactions on the surface of mixed conducting oxides, our fun-
damental understanding of these reactions remains quite lim-
ited. This paper outlines a framework for deriving kinetic
rate laws based on proposed reaction mechanisms, applica-
ble to highly defective materials with nonideal thermodynam-
ics. In the case of O2 exchange, we have found that these
nonideal thermodynamics play a key role in defining the PO2

and temperature dependencies of the rate law. Comparison
of various kinetic scenarios with published oxygen-exchange
data for La1−xSrxCoO3−δ (LSC) and La1−xSrxFeO3−δ (LSF)
suggest that for electron-carrier-rich mixed conductors, oxy-
gen exchange is governed by chemisorption or dissociative
adsorption on limited surface vacancy sites. This conclusion
stands in contrast to conventional wisdom, which usually as-
sumes dissociation due to an activation barrier is limiting. Dif-
ferences in the kinetics between LSC and LSF suggest that
metallic band structure may play an important catalytic role
by stabilizing physisorbed O2 on the surface. We note that
equilibrium exchange rates (as measured using isotope trac-
ers or small-perturbation methods) are inherently ambiguous
probes of mechanism, often consistent with numerous pos-
sible mechanisms. Additional kinetic data involving moder-
ate to large displacements from equilibrium would be help-
ful in distinguishing competitive theories regarding the sur-
face.
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Appendix A. Derivation and explanation of Eq. (1)

A.1. Nonconfigurational contributions to the free energy

We begin by considering two general states, A and B , that
are in equilibrium across an interface, as shown in Fig. A.1a,

(A.1)A � B.

At equilibrium, we would write

(A.2)μA = μB,

Fig. A.1. (a) Schematic illustrating the transition state pathway for a reaction
A � B across an interface; (b) plot of G∗ (defined in Appendix A) along the
reaction coordinate; (c) modified energy diagram where G∗ of the product is
shifted relative to its initial position by (−�E).
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where μi is the electrochemical potential of species i. We fur-
ther separate μi into a temperature-dependent reference-state
term, μ0

i (T ), plus a term relating changes in free energy to
changes in composition or other nonideal interactions,

(A.3)μ0
A + RT ln(fAcA) = μ0

B + RT ln(fBcB),

where fi is the activity coefficient for species i. (For changed
species, we have adopted Newman’s convention where fi [not
μ0

i ] depends on the electrical state [15].) Rearranging Eq. (A.3),
we have

RT ln

(
cB

cA

)
= −�G0

rxn − �Gex
rxn,

(A.4)where �Gex
rxn = RT ln

(
fB

fA

)
.

Equation (A.4) shows that at equilibrium, the composition (con-
figurational entropy) of the two states will be related through a
standard state free-energy difference, �G0

rxn = μ0
B − μ0

A, plus
an excess free-energy term, �Gex

rxn, associated with nonideal
energetic or entropic interactions, expressible as activity co-
efficients if desired. For the remainder of this discussion, we
consider cases where nonzero �Gex

rxn is caused either by ener-
getic interactions or the configurational entropic contribution of
additional species whose concentrations are tied to the reactants
and products.

To examine the consequences of this excess free-energy term
�Gex

rxn on the kinetics, we define G∗ as the free energy mi-
nus the contribution of configurational entropy of the reacting
species along the reaction coordinate. For example, G∗ of A

would be defined as μA −RT ln cA, whereas G∗ of T might be
defined as μT − RT lnΓT , where ΓT is the interfacial concen-
tration of the transition state in some appropriate set of units.
The variation in G∗ along the reaction coordinate is illustrated
in Fig. A.1b. The transition state (which is mush less proba-
ble than the reactant or product) has a higher value of G∗ than
of A or B , differing by �G∗

f and �G∗
b , respectively. Applying

transition-state theory [13], we expect the kinetics of the reac-
tion A � B to be governed by the equilibrium population of the
transition state (ΓT ), and thus

(A.5)r = (rf − rb) = k
(
cAe

−�G∗
f /RT − cBe−�G∗

b/RT
)
,

where, to ensure microscopic reversibility, we also have �G∗
b +

(�G0
rxn + �Gex

rxn) = �G∗
f .

Equation (A.5) shows that even when a system has non-
ideal thermodynamics, a mass action rate expression can be
made consistent with thermodynamics by incorporating non-
ideal interactions explicitly into the forward and backward rate
coefficients ke

−�G∗
f /RT and ke−�G∗

b/RT . Because in general
�G∗

f and �G∗
b may depend on composition and driving force,

one must have a specific model for these dependencies to use
Eq. (A.5). In chemical kinetics, this model might involve sol-
vent effects, or pressure [16]. In classical electrochemical ki-
netics, it involves shifts in solution potential [14].

A.2. Entropic versus energetic driving forces

To better see how Eq. (A.5) fits within the frameworks of
chemical and electrochemical kinetics, it is helpful to exam-
ine the two asymptotic limits discussed in the Introduction:
entropic versus energetic driving forces. In the entropic limit,
the reaction is displaced from equilibrium by altering the con-
figurational entropy (composition) of the reactants, but without
changing G∗ along the reaction coordinate (e.g., �Gex

rxn = 0),
and thus �G∗

f = �G0
f and �G∗

b = �G0
b are constants. In this

case, the thermodynamic driving force, Λ, may be expressed
entirely in terms of displacements in configurational entropy,

(A.6)Λ = RT ln(cA/cB) − �G0
rxn,

and the rate expression Eq. (A.5) becomes simply

(A.7)r = ke
−�G0

f /RT
cA − ke−�G0

b/RT cB,

which is a simple mass action rate expression having rate co-
efficients independent of the driving force. This is the type of
rate expression applied most often in chemical kinetics and in
solid-state systems having thermodynamics that obey point de-
fect theory.

In contrast to an entropic driving force, imagine instead
shifting the energy of state B relative to state A by an amount
�Gex

rxn = −�E, while holding cA and cB constant. For exam-
ple, imagine the energy of B relies on the composition of a third
component in the system, and we alter the concentration of that
third component. Alternatively, if B is charged, then the energy
of state B would depend on an externally applied field. In either
case, we would have a modified free-energy diagram relative to
the initial equilibrium state, as shown in Fig. A.1c.

As a result of the shift in energy, the free energy of the tran-
sition state also may be shifted downward by some amount
usually less than or equal to �E. Following in the tradition of
electrochemical kinetics, we denote this shift as (1 − β)�E,
where β has a (usually) positive value of order unity, charac-
teristic of the mechanism [14,15]. Recognizing that �E in this
case is also equal to the free-energy shift Λ of reactants relative
to products,

(A.8)Λ = �E,

the rate [Eq. (A.5)] becomes

(A.9)
r = ke

−�G0
f /RT

e((1−β)Λ)/RT cA − ke−�G0
b/RT e−βΛ/RT cB,

where now the forward and/or backward rate coefficients de-
pend on the thermodynamic driving force Λ. As we will show
below, the value of β depends on the nature of the transition
state and the degree to which the driving force involves an en-
ergetic or entropic displacement from equilibrium.

Maier has previously described the asymptotic cases repre-
sented in Eqs. (A.7) and (A.9) as “chemical” and “electrical”
experiments, respectively [10]. In what follows, we examine the
mixed case, where the driving force involves a generalized dis-
placement from equilibrium.
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A.3. Combined energetic and entropic contributions to the
species free energy

A more general free-energy driving force may be defined
that incorporates both energetic and entropic displacements
from equilibrium, involving both reactants and products. This
driving force can be identified by first defining the reactant and
product free energies as

(A.10a)μA = μ0
A + εA + RT ln(cA),

(A.10b)μB = μ0
B + εB + RT ln(cB),

where εi is an excess free-energy term associated with nonideal
interactions influencing species i. We can then define a gener-
alized driving force, Λ = μA − μB , given by

Λ = (
μ0

A − μ0
B

) + (εA − εB) + RT ln

(
cA

cB

)

(A.11)= −�G0
rxn + �E + RT ln

(
cA

cB

)
,

where �G0
rxn = (μ0

B − μ0
A) + (ε0

B − ε0
A) is the standard free

energy of reaction, defined under conditions where �G0
f and

�G0
b are also defined, and �E = (εA − εB) − (ε0

A − ε0
B) =

−�Gex
rxn is the negative excess free-energy relative to standard

conditions. Equation (A.5) then becomes

(A.12)r = kcAe
−(�G0

f −(1−β)�E)/RT − kcBe−(�G0
b+β�E)/RT .

Recalling that �G0
b = �G0

f − �G0
rxn, Eq. (A.12) can be reex-

pressed as

(A.13)r = ke
−�G0

f /RT
cAe((1−β)�E)/RT

[
1 − e−Λ/RT

]
,

where we have adopted the form of a classical nonequilibrium
thermodynamic rate expression, r = �0[1 − e−Λ/RT ], where Λ

is the “approach to equilibrium” or “affinity” [60], and �0 is
a rate prefix that becomes equal to the exchange rate, rf = rb ,
in the limit of equilibrium. This expression shows that �0 will
generally depend on composition, as well as shifts in the ener-
getic contributions to the free energy as a result of applying the
driving force.

Equation (A.13) can be generalized to the case with multiple
reactants and products, yielding Eq. (1). As shown in Section 3,
this further leads to a general prescription for deriving a non-
equilibrium rate expression based on a given reaction mecha-
nism. As shown above, this approach requires that we be able to
define (or hypothesize) the entropic and energetic contributions
to the free energies of the reactants (and reactive intermediates
in the case of a multistep reaction). However, the benefit is that
thermodynamic consistency is guaranteed from the beginning.
In cases where the mechanism dictates β , this can be incorpo-
rated explicitly, usually in terms of mass action. In other cases,
β can be left as an unknown kinetic parameter subject to exper-
imental determination (as in electrochemical kinetics).

A.4. Special cases relevant to electrochemical and chemical
kinetics

The value of β depends on the nature of the transition state.
For problems in electrochemical kinetics, where A and B are
charged species, the transition state often involves an energetic
barrier, such as an ion crossing a polarized interface under the
influence of an applied field. In this case, we might expect β to
adopt a fixed fractional value, 0 < β < 1, characteristic of the
local fields at the interface [14]. If we also assume that com-
positions remain fixed, then the driving force becomes purely
energetic (�E = Λ). Defining the overpotential as η = Λ/nF ,
Eq. (A.13) is usually rearranged as the Butler–Volmer equa-
tion [15],

r = kc
1−β
A c

β
Be

−(β�G0
b+(1−β)�G0

f )/RT

(A.14)× [
e((1−β)nFη)/RT − e(−βnFη)/RT

]
.

On the other hand, for problems in chemical kinetics, where de-
viations from ideality are usually described in terms of specific
activity coefficients, Eq. (A.13) can be rearranged as [16]

(A.15)r = kf

fA

fT

cA − kb

fB

fT

cB,

where we have defined specific activity coefficients �Gex
rxn =

RT ln(fB/fA) and redefined β in relation to the activity coeffi-
cient of the transition state, fT = f

β
Af

1−β
B , or

(A.16)β = lnfT − lnfB

lnfA − lnfB

.

Here we expect β to be composition-dependent. As recently
pointed out by Madon and Iglesia [16], the activity coefficient
of the transition state can often share a composition dependency
with the reactant or product, leading to a fortuitous cancellation
of nonideal effects in the forward or reverse direction, leading
to β = 0 or 1.

A specific case of this situation, relevant to this paper, occurs
when the transition state involves an entropic barrier (defined
as a low-probability event dependent only on composition of the
reactants) rather than an energetic barrier. For example, imag-
ine that the reaction involves an additional species, A+C � B ,
where C is tied in composition to A (by, e.g., site conservation
in a lattice, or electroneutrality). Further imagine that the for-
ward rate is governed entirely by the probability of a collision
between A and C, with no further energetic barriers to forma-
tion of B after the collision. In this case, �G0

f = −RT ln cC , a
constant independent of the energy of product state B(β = 1).
Thus Eqs. (A.12)–(A.13) become

(A.17a)r = kcAcC − ke−�G∗
b/RT e−Λ/RT cB,

where the reverse rate coefficient depends (only) on the driving
force. Likewise, if the reaction were A � B +C, with the same
assumptions applied to the reverse reaction, then we would ex-
pect β = 0, and thus

(A.17b)r = ke
−�G0

f /RT
eΛ/RT cA − kcCcB,
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where now it is the forward rate coefficients that depends on
driving force. In Eqs. (A.17a) and (A.17b), we have identified
the specific mass action effect of species C and incorporated it
explicitly into the rate expression. Section 3 provides examples
in which this approach is (and is not) useful. For semicon-

ducting oxides, it can be helpful to define electrons and holes
as explicit species obeying mass action. For metallic mixed
conductors, this approach becomes meaningless, because elec-
trons have nominally fixed entropy and ill-defined concentra-
tion.

Appendix B. Selected nomenclature

Symbol Units Meaning Location

Roman symbols
c0 mol/cm3 oxygen lattice site concentration Eq. (20)
ce , ch mol/cm3 concentration of electrons, electron holes Eq. (18)
�Ej kJ/mol shift in standard free energy of reaction associated

with a driving force, for reaction step j

Eq. (1)

EF kJ/mol Fermi energy relative to core states Eqs. (9), (18)
Egap kJ/mol band gap energy (for a semiconductor) Eq. (18)
fi none activity coefficient of species i Eq. (A.3)
f solid

O2
bar fugacity of O2 in the solid phase Eq. (14)

�G0
rxn kJ/mol standard free energy of reaction Eq. (A.4)

�Gex
rxn kJ/mol excess free energy of reaction Eq. (A.4)

G∗ kJ/mol total free energy minus configurational entropy Eq. (A.5)
�G∗

f
, �G∗

b
kJ/mol free energy barrier for reaction in the forward,

backward directions
Eq. (A.5)

�G0
j

kJ/mol standard free energy of reaction step j Eq. (13)

�G0
f,j

,�G0
b,j

kJ/mol unperturbed free energy barrier for reaction step j

in the forward, backward directions
Eq. (1)

g0 mol/kJ density of states at the Fermi level (metal) Eq. (9)
�H kJ/mol enthalpy of reaction (see G for super/subscripts)
kj various pre-exponential factor for reaction step j Eq. (1)
Knp none electron–hole equilibrium constant (semiconductor) Eq. (18)
n none PO2 -exponent of equilibrium oxygen exchange rate Table 3
Nvb, Ncb mol/cm3 effective densities of states of valence, conduction

band (semiconductor)
Eq. (18)

P
gas
O2

bar partial pressure of oxygen in the gas Eq. (14)

qi none charge of species i Eqs. (2), (3)
qj none charge transferred during reaction step j Eqs. (2), (3)
R J/mol K ideal gas constant (8.314 J/mol/K)
rj mol/cm2/s area-specific rate of reaction step j Eq. (1)
�0,j mol/cm2/s rate prefix for reaction step j as limiting Eq. (17)
rf , rb mol/cm2/s forward and backward rates of a reaction Eq. (A.5)
�S J/mol K entropy of reaction (see G for super/subscripts)
T K temperature
x none acceptor dopant concentration, e.g. La1−xSrxCoO3−δ Eq. (8)
xe , xh none electron, electron–hole occupancy Eq. (19)
xν none mole fraction of unoccupied oxygen lattice sites Eq. (6)

Greek symbols
βj none reaction symmetry parameter for reaction step j Eq. (1)
ε none dimensionless energy parameter related to

nonstoichiometry
Eqs. (26), (28)

η volts reaction overpotential Eq. (A.14)
γ none thermodynamic factor Eqs. (26), (28)
Γi none surface coverage of species i Eq. (6)
λm none stoichiometric coefficient for reaction step j = m Eq. (16)
Λ kJ/mol total thermodynamic driving force for the reaction Eq. (14)
Λj kJ/mol thermodynamic driving force for reaction step j Eq. (1)
μi kJ/mol electrochemical potential of species i Eqs. (8)–(11)

Common species and reaction subscripts
s surface oxygen vacancy neutral building unit Eq. (4)
sO2 surface diatomic oxygen neutral building unit Eq. (4)
ν bulk oxygen vacancy neutral building unit Eq. (4)
ads of adsorption, or with adsorption as rate-limiting Eq. (5)

(continued on next page)
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Table (continued)

Symbol Units Meaning Location

diss of dissociation, or with dissociation as rate-limiting Eq. (5)
incorp of incorporation, or with incorporation as rate-limiting Eq. (5)

Kröger–Vink symbols
O oxygen atom Eq. (2)
O2 diatomic oxygen Eq. (2)
V lattice vacancy Eq. (2)
( )× species of neutral charge (relative to un-doped lattice) Eq. (2)
( )q· species of positive charge q Eq. (2)
( )q− species of negative charge q Eq. (2)
( )Ob

species located at a normal bulk oxygen lattice site Eq. (2)
( )Os species located at a normal surface oxygen lattice site Eq. (2)
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